
LC²MOS Quad SPST Switches

ADG201A/ADG202A

FEATURES

44V Supply Maximum Rating \pm 15V Analog Signal Range Low R_{ON} (60 Ω) Low Leakage (0.5nA) Break Before Make Switching Extended Plastic Temperature Range (-40°C to +85°C) Low Power Dissipation (33mW) Available in 16-Lead DIP/SOIC and 20-Lead PLCC/LCCC Packages Superior Second Source: ADG201A Replaces DG201A, HI-201 ADG202A Replaces DG202

FUNCTIONAL BLOCK DIAGRAMS


GENERAL DESCRIPTION

switching the digital inputs.

The ADG201A and ADG202A are monolithic CMOS devices comprising four independently selectable switches. They are designed on an enhanced LC²MOS process which gives an increased signal handling capability of $\pm 15V$. These switches also

PRODUCT HIGHLIGHTS

1. Extended Signal Range: These switches are fabricated on an enhanced LC^2MOS process, resulting in high breakdown and an increased analog signal range of $\pm 15V$.

3. Low Leakage:

. 1

C 200 1

$\label{eq:additional} ADG201A/ADG202A - SPECIFICATIONS (V_{DD} = +15V, V_{SS} = -15V, unless otherwise specified)$

	K Version		BVersion		T Version		ſ	
Parameter	25°C	40°C to + 85°C	25°C	40°C to + 85°C	25°C	- 55°C to	TT	Test Conditions
ANALOG SWITCH	25 C	+850	25 C	+851	25.0	+125℃	Units	l est Conditions
Analog Signal Range	±15	±15	±15	±15	±15	±15	Vales	
R _{ON}	$\frac{1}{60}$	±13	± 15 60	±15	$\frac{\pm 15}{60}$	±15	Volts Ωtyp	$-10V \leq V_{S} \leq +10V$
NON	90	145	90	145	90	145	$\Omega \max$	$I_{DS} = 1.0 \text{mA}$
		145		145	20	145	32 max	Test Circuit 1
R_{ON} vs. $V_D(V_S)$	20		20		20		% typ	
R _{ON} Drift	0.5		0.5		0.5		%/°Ctyp	
R _{ON} Match	5		5		5		%typ	$\mathbf{V}_{\mathrm{S}} = 0\mathbf{V}, \mathbf{I}_{\mathrm{DS}} = 1\mathbf{m}\mathbf{A}$
I _S (OFF)	0.5		0.5		0.5		nA typ	$V_D = \pm 14V$; $V_S \mp 14V$; Test Circuit 2
OFF Input Leakage	2	100	2	100	1	100	nA max	
I _D (OFF)	0.5		0.5		0.5		nA typ	$V_D = \pm 14V; V_S = \mp 14V;$ Test Circuit 2
OFF Output Leakage	2	100	2	100	1	100	nA max	
I _D (ON)	0.5		0.5		0.5		nA typ	$V_D = \pm 14V$; Test Circuit 3
ON Channel Leakage	2	200	2	200	1	200	nA max	
DIGITAL CONTROL								
V _{INH} , Input High Voltage		2.4		2.4		2.4	Vmin	
V _{INL} , Input Low Voltage		0.8		0.8		0.8	V max	
I _{INL} or I _{INH}		1		1		1	$\mu A \max$	
DYNAMIC CHARACTERISTICS								
tOPEN	30		30		30		ns typ	,
toN	300		300		300		ns max	Test Circuit 4
t _{OFF} ¹	250		250		250		ns max	Test Circuit 4
OFF Isolation	80		80		80		dB typ	$V_s = 10V(p-p); f = 100kHz$ $R_1 = 75\Omega; Test Circuit 6$
Channel-to-Channel Crosstalk	80		80		80		dB typ	$R_L = 7502$; rest Circuit 6 Test Circuit 7
C _S (OFF)	5		5		5		pF typ	i est chicult /
$C_{\rm D}({\rm OFF})$	5		5		5		pFtyp	
$C_{\rm D}, C_{\rm S}({\rm ON})$	16		16		16		pF typ	
CIN Digital Input Capacitance	5		5		5		pF typ	
Q _{INJ} Charge Injection	20		20		20		pC typ	$R_S = 0\Omega; C_L = 1000 pF; V_S = 0V$ Test Circuit 5
POWER SUPPLY								
I _{DD}	0.6		0.6		0.6		mA typ	Digital Inputs = V_{INL} or V_{INH}
I _{DD}		2		2		2	mA max	
I _{SS}	0.1		0.1		0.1		mA typ	
I _{ss}		0.2		0.2		0.2	mA max	
Power Dissipation		33		33		33	mW max	

NOTES ¹Sample tested at 25°C to ensure compliance.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS*

 $(T_A = +25^{\circ}C \text{ unless otherwise stated})$

X7 4- X7 44X7	Power Dissipation (Any Package)
V_{DD} to V_{SS}	Up to $+75^{\circ}$ C
V_{DD} to GND	Derates above +75°C by
V_{SS} to GND	Operating Temperature
	Commercial (K Version) $\ldots \ldots \ldots -40^{\circ}$ C to $+85^{\circ}$ C
Voltage at S, D $V_{SS} = 0.3V$ to $V_{DD} = 0.3V$	Industrial (B Version) $\ldots \ldots \ldots \ldots \ldots -40^{\circ}$ C to $+85^{\circ}$ C
bb	Extended (T Version)
Continuous Current, S or D	Storage Temperature Range 65°C to + 150°C

, <u>1</u>

ADG201A/ADG202A

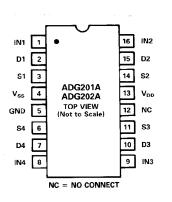
CAUTION

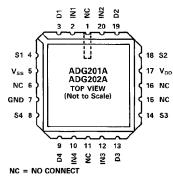
ESD (electrostatic discharge) sensitive device. The digital control inputs are diode protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed.

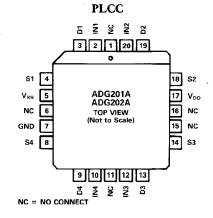
ORDERING GUIDE

Model ¹	Temperature Range	Package Option ²
ADG201AKN	-40°C to +85°C	N-16
ADG201AKR	-40° C to $+85^{\circ}$ C	R-16A
ADG201AKP	-40° C to $+85^{\circ}$ C	P-20A
ADG201ABQ	-40° C to $+85^{\circ}$ C	Q-16
ADG201ATQ	-55° C to $+125^{\circ}$ C	Q-16
ADG201ATE	-55° C to $+125^{\circ}$ C	E-20A
ADG202AKN	- 40°C to + 85°C	N-16
ADG202AKR	-40° C to $+85^{\circ}$ C	R-16A
ADG202AKP	-40° C to $+85^{\circ}$ C	P-20A
ADG202ABQ	-40° C to $+85^{\circ}$ C	Q-16
ADG202ATQ	-55° C to $+125^{\circ}$ C	Q-16
ADG202ATE	-55°C to +125°C	E-20A

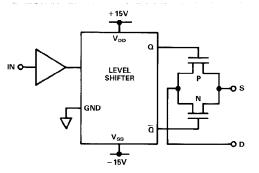
NOTES


¹To order MIL-STD-883, Class B processed parts, add/883B to T grade part numbers. See Analog Devices Military Products Databook (1990) for military data sheet.


²E = Leadless Ceramic Chip Carrier (LCCC); N = Plastic DIP; R = 0.15''Small Outline IC (SOIC); P = Plastic Leaded Chip Carrier (PLCC); Q = Cerdip.


PIN CONFIGURATIONS

LCCC


DIP, SOIC

ADG201A/ADG202A FUNCTIONAL DIAGRAM

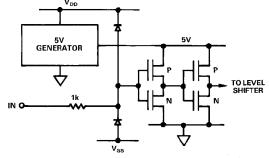
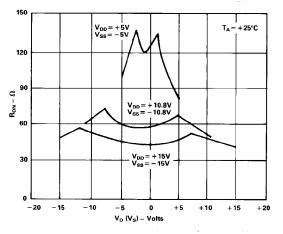
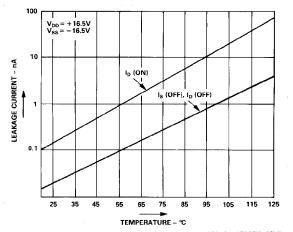
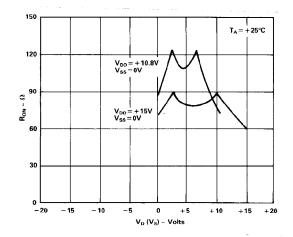
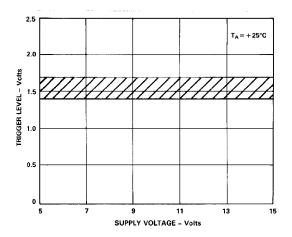



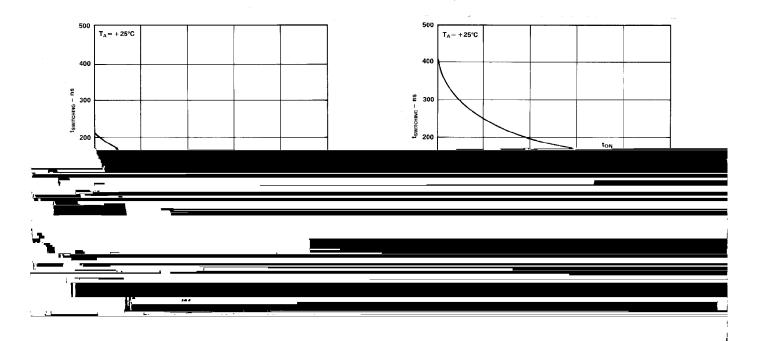
Figure 1. Typical Digital Input Cell

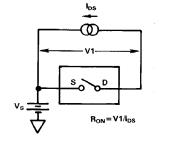

-3-

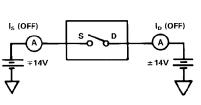
ADG201A/ADG202A—Typical Performance Characteristics

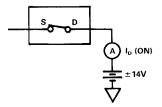

The switches are guaranteed functional with reduced single or dual supplies down to 4.5V.


R_{ON} as a Function of V_D (V_S): Dual Supply Voltage

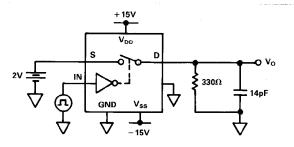

Leakage Current as a Function of Temperature (Note: Leakage Currents Reduce as the Supply Voltages Reduce)

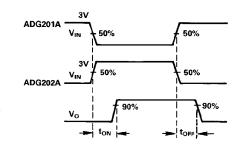

 R_{ON} as a Function of V_D (V_S): Single Supply Voltage



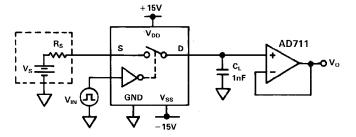

Trigger Level vs. Power Supply Voltage: Dual or Single Supply Voltage

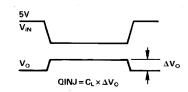
Test Circuits — ADG201A/ADG202A

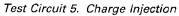


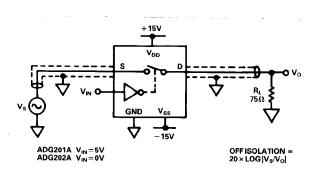


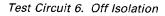
Test Circuit 1

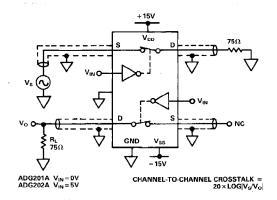



Test Circuit 3



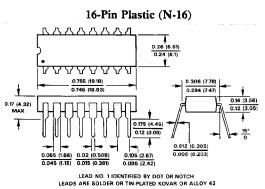


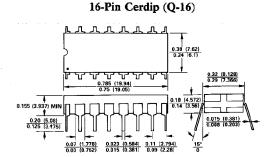

Test Circuit 4



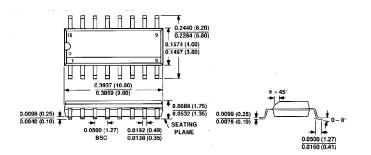
Test Circuit 7. Channel-to-Channel Crosstalk

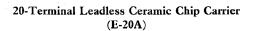
ADG201A/ADG202A

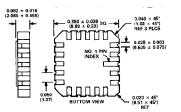

TERMINOLOGY

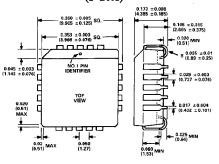

TERMINOL	OGY	t _{ON}	Delay time between the 50% and 90% points of
$\label{eq:constraint} \begin{array}{l} \textbf{IERMINOL} \\ \textbf{R}_{ON} & \textbf{Match} \\ \textbf{I}_{S} & (OFF) \\ \textbf{I}_{D} & (OFF) \\ \textbf{I}_{D} & (OFF) \\ \textbf{I}_{D} & (ON) \\ \textbf{V}_{D} & (\textbf{V}_{S}) \\ \textbf{C}_{S} & (OFF) \\ \textbf{C}_{D} & (OFF) \\ \textbf{C}_{IN} \\ \textbf{C}_{D} & \textbf{C}_{S} & (ON) \end{array}$	Ohmic resistance between terminals OUT and S Difference between the R _{ON} of any two channels Source terminal leakage current when the switch is off Drain terminal leakage current when the switch is off Leakage current that flows from the closed switch into the body Analog voltage on terminal D, S Switch input capacitance "OFF" condition Switch output capacitance "OFF" condition Digital input capacitance when the switch	toff toff topen Vinl Vinh I _{INL} (I _{INH}) V _{DD} V _{SS} I _{DD}	the digital input and switch "ON" condition Delay time between the 50% and 90% points of the digital input and switch "OFF" condition "OFF" time measured between 50% points of both switches, which are connected as a multi- plexer, when switching from one address state to another Maximum Input Voltage for a Logic Low Minimum Input Voltage for a Logic High Input current of the digital input Most positive voltage supply Most negative voltage supply Positive supply current
-D) -3 ()	is on	I _{SS}	Negative supply current

MECHANICAL INFORMATION


OUTLINE DIMENSIONS


Dimensions shown in inches and (mm).





ł

20-Terminal Plastic Leaded Chip Carrier (P-20A)

