INTEGRATED CIRCUITS

Product specification
File under Integrated Circuits, IC04

January 1995

HEF4750V LSI

DESCRIPTION

The HEF4750V frequency synthesizer is one of a pair of LOCMOS devices, primarily intended for use in high-performance frequency synthesizers, e.g. in all communication, instrumentation, television and broadcast applications. A combination of analogue and digital techniques results in an integrated circuit that enables high performance. The complementary device is the universal divider type HEF4751V.

Together with a standard prescaler, the two LOCMOS integrated circuits offer low-cost single loop synthesizers with full professional performance. Salient features offered (in combination with HEF4751V) are:

- Wide choice of reference frequency using a single crystal.
- High-performance phase comparator low phase noise low spurii.
- System operation to > 1 GHz.
- Typical 15 MHz input at 10 V.
- · Flexible programming:

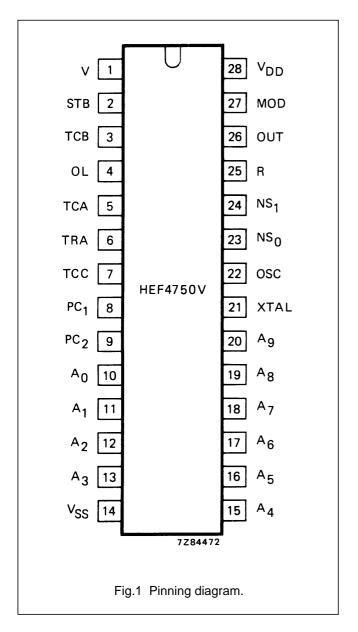
frequency offsets

ROM compatible

fractional channel capability.

- Programme range 6½ decades, including up to 3 decades of prescaler control.
- · Division range extension by cascading.
- Built-in phase modulator.
- · Fast lock feature.
- · Out-of-lock indication.
- · Low power dissipation and high noise immunity.

APPLICATION INFORMATION

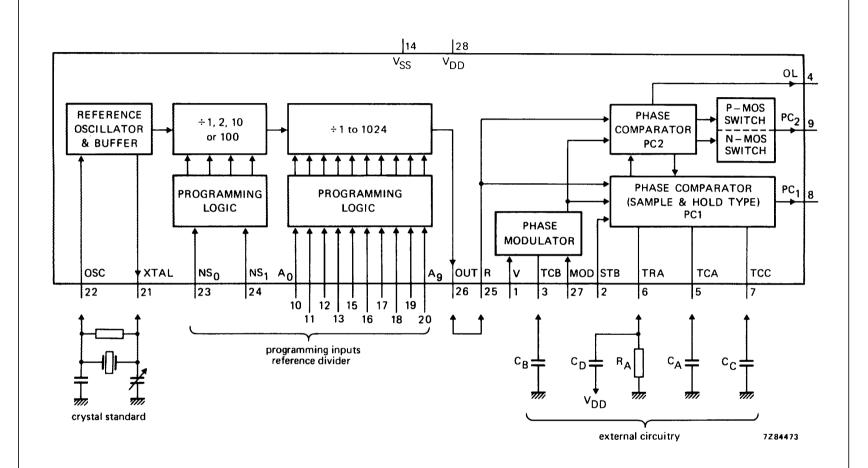

Some examples of applications for the HEF4750V in combination with the HEF4751V are:

- VHF/UHF mobile radios.
- · HF s.s.b. transceivers.
- · Airborne and marine communications and navaids.
- · Broadcast transmitters.
- · High quality radio and television receivers.
- · High performance citizens band equipment.
- · Signal generators.

SUPPLY VOLTAGE

RATING	RECOMMENDED OPERATING
-0,5 to +15	9,5 to 10,5 V

HEF4750V LSI


PINNING

R	phase comparator input, reference
• •	
V	phase comparator input
STB	strobe input
TCA	timing capacitor C _A pin
TCB	timing capacitor C _B pin
TCC	timing capacitor C _C pin
TRA	biasing pin (resistor R _A)
PC ₁	analogue phase comparator output
PC_2	digital phase comparator output
MOD	phase modulation input
OL	out-of-lock indication
OSC	reference oscillator/buffer input
XTAL	reference oscillator/buffer output
A_0 to A_9	programming inputs/programmable divider
NS_0 , NS_1	programming inputs, prescaler
OUT	reference divider output

HEF4750VD(F): 28-lead DIL; ceramic (cerdip)

(SOT135)

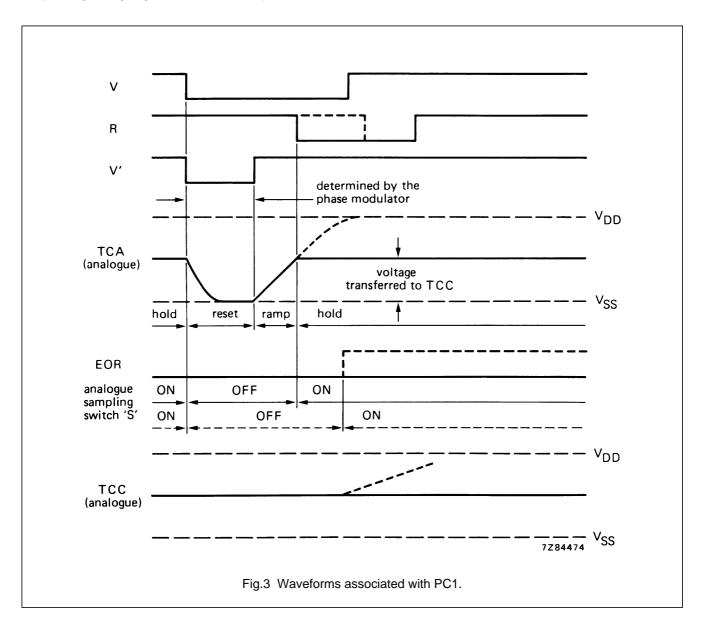
(): Package Designator North America

N.B. PC_1 = analogue output; PC_2 = 3-state output.

Fig.2 Block diagram comprising five basic functions: phase comparator 1 (PC1), phase comparator 2 (PC2), phase modulator, reference oscillator and reference divider. These functions are described separately.

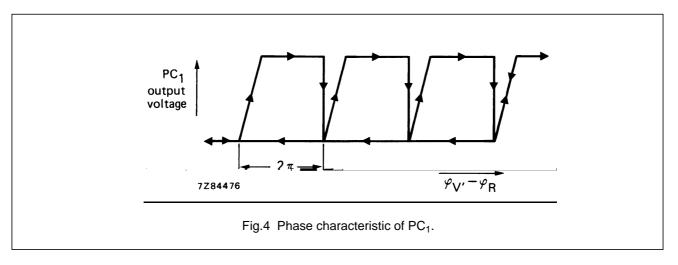
HEF4750V LSI

FUNCTIONAL DESCRIPTION


Phase comparator 1

Phase comparator 1 (PC1) is built around a SAMPLE and HOLD circuit. A negative-going transition at the V-input causes the hold capacitor (C_A) to be discharged and after a specified delay, caused by the Phase Modulator by means of an internal V' pulse, it produces a positive-going ramp. A negative-going transition at the R-input terminates

the ramp. Capacitor C_A holds the voltage that the ramp has attained. Via an internal sampling switch this voltage is transferred to C_C and in turn buffered and made available at output PC_1 .

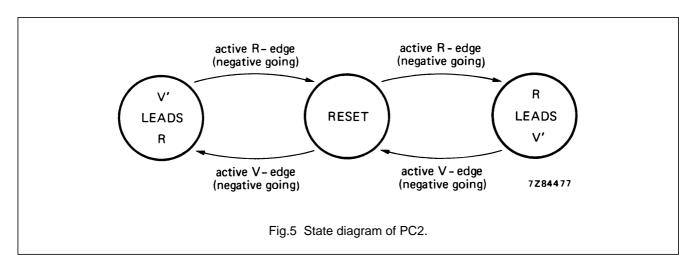

If the ramp terminates before an R-input is present, an internal end of ramp (EOR) signal is produced.

These actions are illustrated in Fig.3.

The resultant phase characteristic is shown in Fig.4.

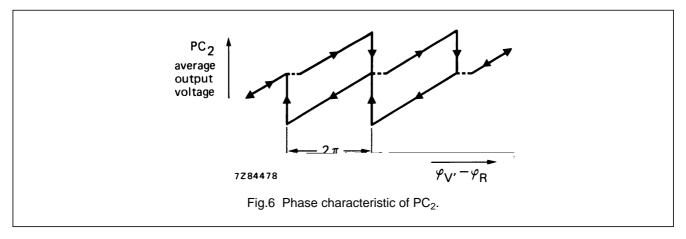
HEF4750V LSI

PC1 is designed to have a high gain, typically 3200 V/cycle (at 12,5 kHz). This enables a low noise performance.


Phase comparator 2

Phase comparator 2 (PC2) has a wide range, which enables faster lock times to be achieved than otherwise would be possible. It has a linear \pm 360° phase range, which corresponds to a gain of typically 5 V/cycle.

This digital phase comparator has three stable states:


- · reset state,
- · V' leads R state,
- R leads V' state.

Conversion from one state to another takes place according to the state diagram of Fig.5.

Output PC_2 produces positive or negative-going pulses with variable width; they depend on the phase relationship of R and V'. The average output voltage is a linear function of the phase difference. Output PC_2 remains in the high impedance OFF-state in the region in which PC1 operates. The resultant phase characteristic is shown in Fig.6.

HEF4750V LSI

Strobe function

The strobe function is intended for applications requiring extremely fast lock times. In normal operation the additional strobe input (STB) can be connected to the V-input and the circuit will function as described in the previous sections.

In single, phase-locked-loop type frequency synthesizers, the comparison frequency generally used is either the nominal channel spacing or a sub-multiple. PC2 runs at the higher frequency (a higher reference frequency must also be used), whilst strobing takes place on the lower frequency, thereby obtaining a decrease in lock time. In a system using the Universal Divider HEF4751V, the output OFS cycles on the lower frequency, the output OFF cycles on the higher frequency.

Out-of-lock function

There are a number of situations in which the system goes from the locked to the out-of-lock state (OL goes HIGH):

- 1. When V' leads R, however out of the range of PC1.
- 2. When R leads V'.
- 3. When an R-pulse is missing.
- 4. When a V-pulse is missing.
- 5. When two successive STB-commands occur, the first without corresponding V-signal.

Phase modulator

The phase modulator only uses one external capacitor, C_B at pin TCB. A negative-going transition at the V-input causes C_B to produce a positive-going linear ramp. When the ramp has reached a value almost equal to the modulation input voltage (at MOD), the ramp terminates, C_B discharges and a start signal to the C_A -ramp at TCA is produced. A linear phase modulation is reached in this

way. If no modulation is required, the MOD-input must be connected to a fixed voltage of a certain positive value up to V_{DD} . Care must be taken that the V' pulse is never smaller than the minimum value to ensure that the external capacitor of PC1 (C_A) can be discharged during that time. Since the V' pulse width is directly related to the TCB ramp duration, there is a requirement for the minimum value of this ramp duration.

Reference oscillator

The reference oscillator normally operates with an external crystal as shown in Fig.2. The internal circuitry can be used as a buffer amplifier in case an external reference should be required.

Reference divider

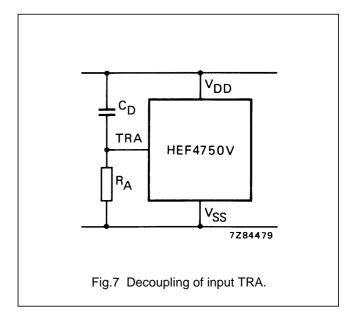
The reference divider consists of a binary divider with a programmable division ratio of 1 to 1024 and a prescaler with selectable division ratios of 1, 2, 10 and 100, according to the following tables:

Binary divider

N (A ₀ TO A ₉)	DIVISION RATIO
0	1024
$0 \le N \le 1023$	N

Prescaler

PROGRAMMING WORD (NS ₀ , NS ₁)	DIVISION RATIO
0	1
1	2
2	10
3	100


Frequency synthesizer

HEF4750V LSI

In this way suitable comparison frequencies can be obtained from a range of crystal frequencies. The divider can also be used as a 'stand alone' programmable divider by connecting input TRA to V_{DD} , which causes all internal analogue currents to be switched off.

Biasing circuitry

The biasing circuitry uses an external current source or resistor, which has to be connected between the TRA and V_{SS} pins. This circuitry supplies all analogue parts of the circuit. Consequently the analogue properties of the device, such as gain, charge currents, speed, power dissipation, impedance levels etc., are mainly determined by the value of the input current at TRA. The TRA input must be decoupled to V_{DD} , as shown in Fig.7. The value of C_D has to be chosen such that the TRA input is 'clean', e.g. 10 nF at $R_A=68\ k\Omega$.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	V_{DD}	-0,5 t	to + 15 V
Voltage on any input	V_{I}	$-0,5$ to V_{DI}	$_{\rm D}$ + 0,5 V
D.C. current into any input or output	±Ι	max.	10 mA
Power dissipation per package			
for $T_{amb} = 0$ to $+ 85$ °C	P_{tot}	max.	500 mW
Power dissipation per output			
for T _{amb} = 0 to 85 °C	Р	max.	100 mW
Storage temperature	T_{stg}	−65 to	+ 150 °C
Operating ambient temperature	T_{amb}	-40 to	+ 85 °C

Frequency synthesizer

HEF4750V LSI

DC CHARACTERISTICS

at V_{DD} = 10 V \pm 5%; voltages are referenced to V_{SS} = 0 V, unless otherwise specified; for definitions see note 1.

PARAMETER SYMBOL -40			T _{amb} (°C										
Quiescent device current IDD	PARAMETER	SYMBOL		-40 + 25 + 85								UNIT	NOTES
Current IDD			MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	-	
Input current; logic inputs, MOD	Quiescent device												
inputs, MOD	current	I _{DD}	_	_	100	_	_	100	_	_	750	μΑ	2
Output leakage current at ½ V _{DD} ± I₂ V _{DD} - 20 - 0,05 20 60 nA 3,4 TCA, hold-state TCC, analogue switch OFF PC₂, high impedance OFF-state ± I₂ 50 - 50 50 500 nA ± I₂ PC₂, high impedance OFF-state ± I₂ 50 50 50 500 nA - 50 50 50 nA - 50 nA Logic input voltage LOW HIGH VIH HIGH VIH LOGIC output voltage LOW; at I I₀ I < 1 µA HIGH V₀H	Input current; logic												
at ½ V _{DD} TCA, hold-state ± I _Z 20 - 0,05 20 60 nA 3,4 TCC, analogue switch OFF ± I _Z 20 - 0,05 20 60 nA PC _Z , high impedance ± I _Z 50 50 500 nA Logic input voltage LOW HIGH V _{IH} 50 50 50 50 nA Logic output voltage LOW; at I I _O < 1 μA V _{OL} 50 50 50 nA HIGH V _{OH} 50 50 50 mV 3 Logic output current LOW; at V _{OL} = 0,5 V outputs OL, PC _Z , OUT output XTAL I _{OL} 2,8 2,4 1,9 mA Logic output current HIGH; at V _{OH} = V _{DD} - 0,5 V outputs OL, PC _Z , OUT output XTAL -I _{OH} 1,4 1,2 0,9 mA Output TCC sink current I _O mA 3,4,5 Output TCC source -I _O mA 3,4,6 Internal resistance	inputs, MOD	± I _{IN}	_	_	300	_	_	300	_	_	1000	nA	3
TCA, hold-state TCC, analogue switch OFF PC ₂ , high impedance OFF-state	Output leakage current												
TCC, analogue switch OFF PC2, high impedance OFF-state ± I₂	at $^{1}\!/_{2}$ V_{DD}												3,4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TCA, hold-state	± I _Z	_	_	20	_	0,05	20	_	_	60	nA	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TCC, analogue												
OFF-state	switch OFF	± I _Z	_	_	20	_	0,05	20	_	_	60	nA	
Logic input voltage LOW HIGH V _{IH} V _{IH} — — — — — — — — — — — — — — — — — — —	PC ₂ , high impedance												
Logic input voltage LOW HIGH V _{IH}	OFF-state	± I _Z	_	_	50	_	_	50	_	_	500	nA	
LOW HIGH V _{IH} — max. 0,3 V _{DD} — V V V V V V V Logic output voltage LOW; at I _O < 1 μA V _{OH} — 50 50 50 mV 3	Logic input voltage												
HIGH		V _{IL}				' ma	ax. 0,3	V _{DD}	·			V	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	HIGH					ma	ax. 0,7	V _{DD} —				V	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Logic output voltage												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LOW; at I _O < 1 μA	VOL	_	_	50	_	_	50	_	_	50	mV	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						– min.	V _{DD} –	50 mV -	!			mV	3
LOW; at V _{OL} = 0,5 V outputs OL, PC ₂ , I _{OL} 5,5 4,6 3,6 mA mA output XTAL I _{OL} 2,8 2,4 1,9 mA mA Logic output current HIGH; at V _{OH} = V _{DD} - 0,5 V outputs OL, PC ₂ ,OUT output XTAL 1,5 1,3 1,0 mA mA Output XTAL -I _{OH} 1,4 1,2 0,9 mA mA Output TCC sink current I _O 2,1 mA 3,4,5 Output TCC source current 1,9 mA 3,4,6 Internal resistance 1,9 mA 3,4,6	Logic output current												
outputs OL, PC2, IOL 5,5 - - 4,6 - - 3,6 - - mA output XTAL IOL 2,8 - - 2,4 - - 1,9 - - mA Logic output current HIGH; at V _{OH} = V _{DD} - 0,5 V outputs OL, PC2,OUT outputs OL, PC2,OUT output XTAL 1,5 - - 1,3 - - 1,0 - - mA Output XTAL -IOH 1,4 - - 1,2 - - 0,9 - - mA Output TCC sink current IO - - - 2,1 - - - mA 3,4,5 Output TCC source current - - - - 1,9 - - - - mA 3,4,6	= -												3
OUT													
output XTAL I _{OL} 2,8 - - 2,4 - - 1,9 - - mA Logic output current HIGH; at V _{OH} = V _{DD} - 0,5 V 3 <td< td=""><td></td><td>Iol</td><td>5,5</td><td>_</td><td>_</td><td>4,6</td><td>_</td><td>_</td><td>3,6</td><td>_</td><td>_</td><td>mA</td><td></td></td<>		Iol	5,5	_	_	4,6	_	_	3,6	_	_	mA	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	output XTAL			_	_		_	_		_	_	mA	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•												
outputs OL, PC2,OUT output XTAL -IOH -IOH 1,5 - - 1,3 - - 1,0 - - mA Output TCC sink current IO - - - - - 2,1 - - - mA 3,4,5 Output TCC source current - - - - - 1,9 - - - mA 3,4,6 Internal resistance - - - - 1,9 - - - mA 3,4,6	at $V_{OH} = V_{DD} - 0.5 \text{ V}$												3
output XTAL -I _{OH} 1,4 1,2 0,9 mA Output TCC sink current I _O 2,1 mA 3,4,5 Output TCC source current 1,9 mA 3,4,6 Internal resistance mA 3,4,6		 −l _{OH}	1,5	_	_	1,3	_	_	1,0	_	_	mA	
Output TCC sink current Io - - - - 2,1 - - - mA 3,4,5 Output TCC source current -Io - - - - - - - - - - mA 3,4,6 Internal resistance -			1,4	_	_	1,2	_	_	0,9	_	_	mA	
Output TCC source -Io 1,9 mA 3,4,6 Internal resistance mA 3,4,6	•												
Output TCC source -Io 1,9 mA 3,4,6 Internal resistance mA 3,4,6	current	Io	_	_	_	_	2,1	_	_	_	_	mA	3,4,5
Internal resistance	Output TCC source												
Internal resistance	current	-l _O	_	_	_	_	1,9	_	_	_	_	mA	3,4,6
of TCC	Internal resistance												
	of TCC												
output swing ≤ 200 mV													
specified output range:													
$0.3 \text{ V}_{DD} \text{ to } 0.7 \text{ V}_{DD}$ $ R_i 0.7 k\Omega 3.4$, , ,	Ri	_	_	_	_	0.7	_	_	_	_	$ _{\mathbf{k}\Omega}$	3.4

Frequency synthesizer

		T _{amb} (°C										
PARAMETER	SYMBOL		-40			+ 25			+ 85		UNIT	NOTES
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
Output TCC voltage												
with respect to												
TCA input voltage	ΔV	_	0	_	_	0	-	_	0	_	V	3,4,7
Output PC ₁ sink												
current	Io	_	-	_	_	1,1	-	_	_	_	mA	3,4,8
Output PC ₁ source												
current	-l _O	_	_	_	_	1,0	_	_	_	_	mA	3,4,9
Internal resistance												
of PC ₁												
output swing												
≤ 200 mV												
specified output range:												
0,3 V _{DD} to 0,7 V _{DD}	R _i	_	_	_	_	1,4	_	_	_	_	kΩ	3,4
Output PC ₁ voltage												
with respect to												
TCC input voltage	ΔV	_	0	-	_	0	-	_	0	_	V	3,4,10
EOR generation												
$V_{EOR} = V_{DD} - V_{TCA}$	V_{EOR}	_	0,9	-	_	0,7	-	_	0,6	_	V	3,4,11
Source current; HIGH												
at $V_{OUT} = \frac{1}{2} V_{DD}$;												
output in ramp mode												3,4
TCA	Io	_	_	-	_	13	-	_	_	_	mA	
TCB	Io	_				2,5	-	_	-	_	mA	

Frequency synthesizer

HEF4750V LSI

AC CHARACTERISTICS

General note

The dynamic specifications are given for the circuit built-up with external components as given in Fig.8, under the following conditions; for definitions see note 1; for definitions of times see Fig.19; V_{DD} = 10 $V \pm 5\%$; T_{amb} = 25 °C; input transition times \leq 20 ns; R_A = 68 k Ω \pm 30% (see also note 4); C_A = 270 pF; C_B = 150 pF; C_C = 1 nF; C_D = 10 nF; unless otherwise specified.

	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS	NOTES
Slew rate							
TCA	S _{TCA}	_	52	_	V/μs	R _A = minimum	12
TCA	S _{TCA}	_	28	_	V/μs	R _A = maximum	12
тсв	S _{TCB}	_	20	_	V/μs	R _A = minimum	12
тсв	S _{TCB}	_	10	_	V/μs	R _A = maximum	12
Ramp linearity							
TCA	I _{TCA}	_	2	_	%		13
тсв	I _{TCB}	_	2	_	%		13
Start of TCA-ramp delay	t _{CBCA}	_	200	_	ns		
Delay of TCA-hold	t _{RCA}	_	40	_	ns		
Delay of TCA-discharge	t _{VCA}	_	60	_	ns		
Start of TCB-ramp delay	t _{VCB}	_	60	_	ns		
TCB-ramp duration	t _{rCB}	_	250	_	ns	$V_{MOD} = 4 V$	
	t _{rCB}	_	350	_	ns	$V_{MOD} = 6 V$	
	t _{rCB}	_	450	_	ns	$V_{MOD} = 8 V$	
Required TCB min.							
ramp duration	t _{rCB}	_	150	_	ns		14
Pulse width							
V : LOW	t _{PWVL}	_	20	_	ns		
V : HIGH	t _{PWVH}	_	20	_	ns		
R:LOW	t _{PWRL}	_	20	-	ns		
R : HIGH	t _{PWRH}	_	20	-	ns		
STB:LOW	t _{PWSL}	_	20	-	ns		
STB: HIGH	t _{PWSH}	_	20	_	ns		
Fall time							
TCA	t _{fCA}	_	50	_	ns		
тсв	t _{fCB}	_	50	_	ns		
Prescaler input frequency	f _{PR}	_	30	_	MHz	all division ratios	
Binary divider frequency	f _{DIV}	_	30	_	MHz	all division ratios	
Crystal oscillator frequency	fosc	_	10	_	MHz		
Average power supply current						locked state	
with speed-up 1:10	I _P	_	3,6	-	mA		15
without speed-up	I _P	_	3,2	_	mA		16

Frequency synthesizer

HEF4750V LSI

Notes

1. Definitions:

 R_A = external biasing resistor between pins TRA and V_{SS} ; 68 k $\Omega \pm 30\%$.

 C_A = external timing capacitor for time/voltage converter, between pins TCA and V_{SS} .

C_B = external timing capacitor for phase modulator, between pins TCB and V_{SS}.

 C_C = external hold capacitor between pins TCC and V_{SS} .

 C_D = decoupling capacitor between pins TRA and V_{DD} .

Logic inputs: V, R, STB, A₀ to A₉, NS₀, NS₁, OSC.

Logic outputs: OL, PC2, XTAL, OUT.

Analogue signals: TCA, TCB, TCC, TRA, PC₁, MOD.

- 2. TRA at V_{DD} ; TCA, TCB, TCC and MOD at V_{SS} ; logic inputs at V_{SS} or V_{DD} .
- 3. All logic inputs at V_{SS} or V_{DD} .
- 4. R_A connected; its value chosen such that $I_{TRA} = 100 \mu A$.
- 5. The analogue switch is in the ON position (see Fig.9).
- 6. The analogue switch is in the ON position (see Fig.10).
- 7. See Fig.11.

This guarantees the d.c. voltage gain, combined with d.c.-offset.

Input condition: $0.3 \text{ V}_{DD} \leq \text{V}_{TCA} \leq 0.7 \text{ V}_{DD}$.

 $\Delta V = V_{TCC} - V_{TCA}$.

- 8. See Fig.12.
- 9. See Fig.13.
- 10. See Fig.14.

This guarantees the d.c. voltage gain, combined with d.c.-offset.

Input condition: $0.3 \text{ V}_{DD} \leq \text{V}_{TCC} \leq 0.7 \text{ V}_{DD}$.

 $\Delta V = V_{PC1} - V_{TCC}$.

- 11. Switching level at TCA, generating an EOR-signal, during increasing input voltage.
- 12. See Fig.15.
- 13. See Fig.16.

Definition of the ramp linearity at full swing.

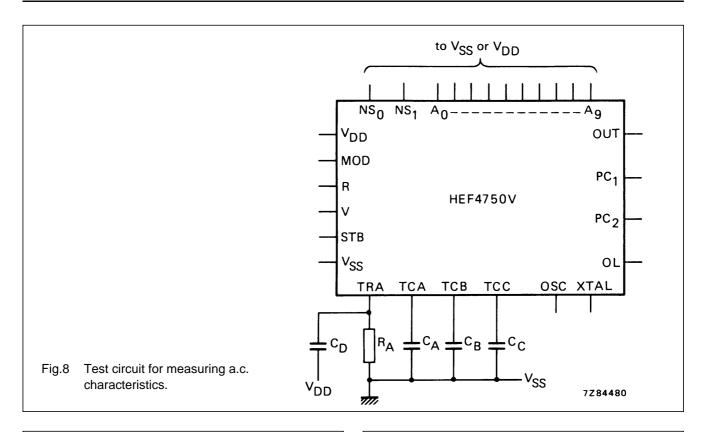
- 14. The external components and modulation input voltage must be chosen such that this requirement will be fulfilled, to ensure that C_A is sufficiently discharged during that time.
- 15. See Fig.17.

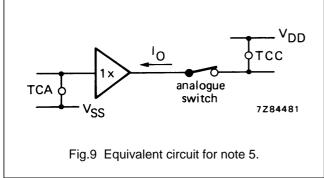
Circuit connections for power supply current specification, with speed-up 1 : 10. V and R are in the range of PC1, such that the output voltage at PC₁ is equal to 5 V.

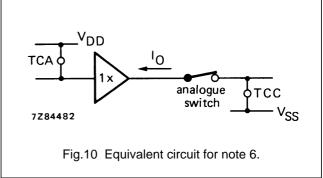
f_{OSC} = 5 MHz (external clock)

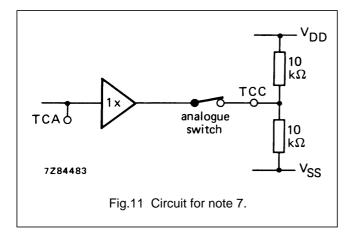
 $f_{STB} = 12,5 \text{ kHz}$

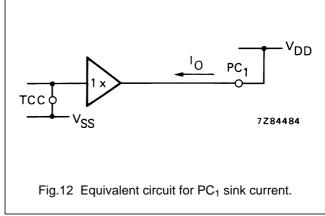
 $f_V = 125 \text{ kHz}$

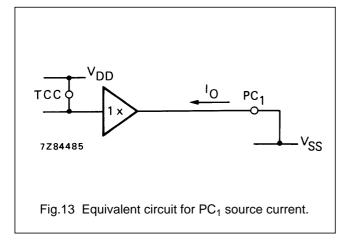

16. See Fig.18.

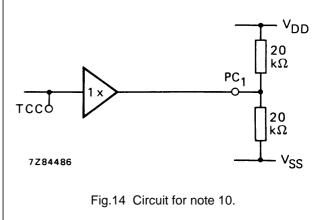

Circuit connections for power supply current specification, without speed-up. V and R are in the range of PC1, such that the output voltage at PC_1 is equal to 5 V.

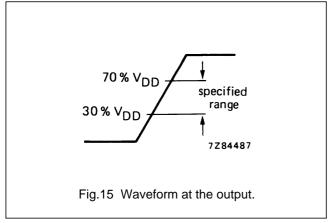

f_{OSC} = 5 MHz (external clock)

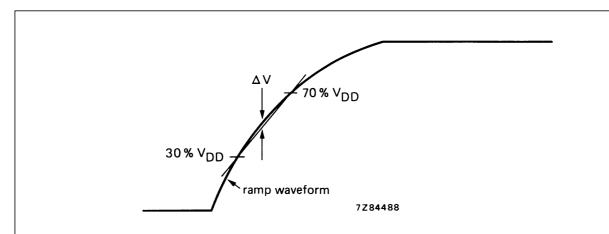

 $f_{STB} = 12,5 \text{ kHz}$


 $f_V = 12,5 \text{ kHz}$

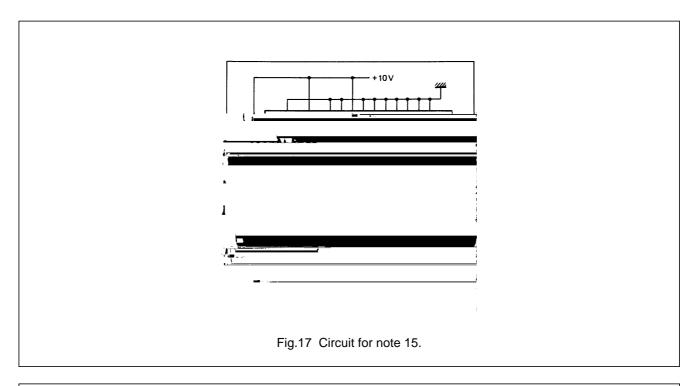


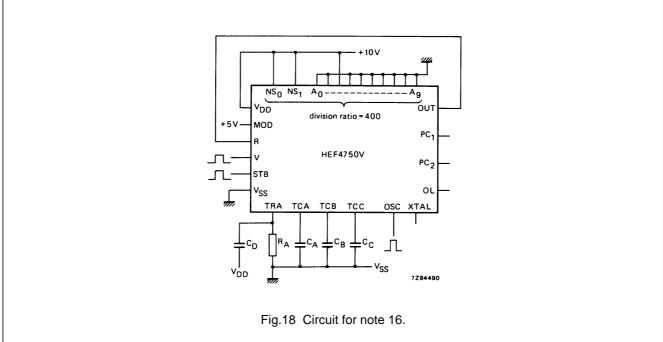





Frequency synthesizer

HEF4750V LSI





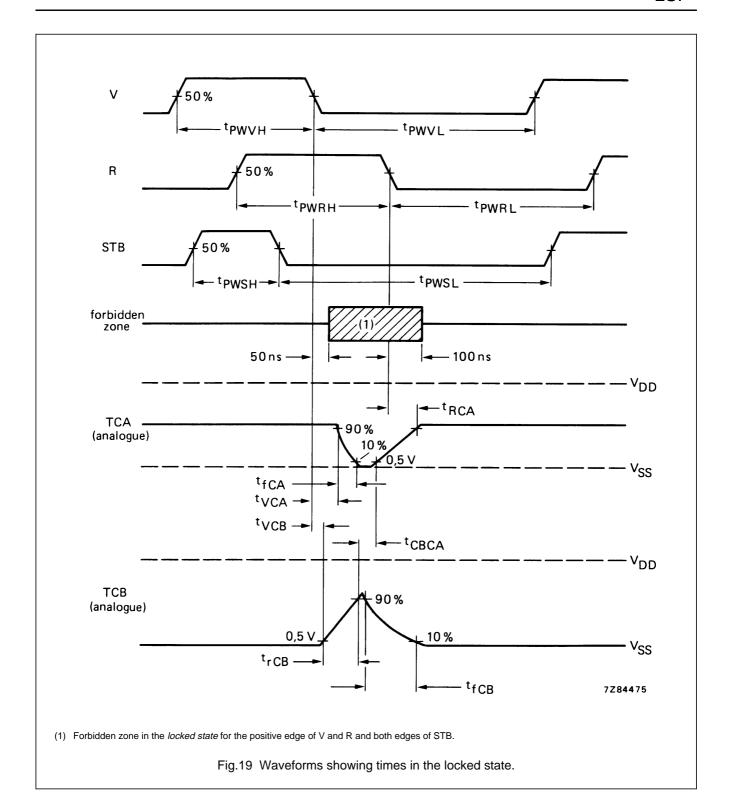

Linearity = $\frac{\Delta V}{1/2 V_{DD}} \times 100\%$.

Fig.16 Definition of the ramp linearity at full swing. ΔV is the maximum deviation of the ramp waveform to the straight line, which joins the 30% V_{DD} and 70% V_{DD} points.

Frequency synthesizer

Cross on our ownth actor	HEF4750V	
Frequency synthesizer	LSI	

APPLICATION INFORMATION

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.